LDA/SVM Driven Nearest Neighbor Classification
نویسندگان
چکیده
Nearest neighbor (NN) classification relies on the assumption that class conditional probabilities are locally constant. This assumption becomes false in high dimensions with finite samples due to the curse of dimensionality. The NN rule introduces severe bias under these conditions. We propose a locally adaptive neighborhood morphing classification method to try to minimize bias. We use local support vector machine learning to estimate an effective metric for producing neighborhoods that are elongated along less discriminant feature dimensions and constricted along most discriminant ones. As a result, the class conditional probabilities can be expected to be approximately constant in the modified neighborhoods, whereby better classification performance can be achieved. The efficacy of our method is validated and compared against other competing techniques using a number of datasets.
منابع مشابه
ECG Identification Based on Non-Fiducial Feature Extraction Using Window Removal Method
This study proposes electrocardiogram (ECG) identification based on non-fiducial feature extraction using window removal method, nearest neighbor (NN), support vector machine (SVM), and linear discriminant analysis (LDA). In the pre-processing stage, Daubechies 4 is used to remove the baseline wander and noise of the original signal. In the feature extraction and selection stage, windows are se...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملPrediction of Stock Market Index Movement by Ten Data Mining Techniques
Ability to predict direction of stock/index price accurately is crucial for market dealers or investors to maximize their profits. Data mining techniques have been successfully shown to generate high forecasting accuracy of stock price movement. Nowadays, in stead of a single method, traders need to use various forecasting techniques to gain multiple signals and more information about the futur...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملA Comparative Analysis of Multi-Class EEG Classification for Brain Computer Interface
Classifying different electroencephalogram (EEG) patterns is one of the key components to designing a usable Brain Computer Interface (BCI). Although it is well known that Support Vector Machine (SVM) is a strong classifier, it does not replace simple Linear Discriminant Analysis (LDA) or Nearest Neighbor Classifier (NNC), which are still in use in current BCI systems. This paper presents a com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2001